LocalSolver


Renault Group — Packaging Logistics

Renault

Renault Group is a French multinational automobile manufacturer, one of the largest automakers in the world. Its Operations Research department is in charge of solving the various optimization problems arising in the company. The most frequently encountered issues are related to Supply Chain Management: production scheduling, transportation optimization, network design, item packing in trucks, layout optimization of workshops, etc. Since 2016, the OR team uses LocalSolver to solve many of these problems.

Context and problem

The French carmaker uses packaging to transport its parts from suppliers to the plants. The suppliers need enough packaging to ship the parts. Hence, Renault must ensure that there is enough packaging in circulation in its supply chain at any time. In the end, empty packaging management represents several million euros per year in terms of transportation and renewal costs. Here we will overview how Renault optimizes packaging logistics in Europe.

The packaging flows inside Renault Group’s supply network are illustrated below:

The shipment of parts between suppliers and factories is driven by Renault’s Material Requirements Planning (MRP) systems, like SAP. Return flows of empty packaging are now operated by the Packaging Management System (PMS), a custom software solution developed by Renault and based on LocalSolver as optimization engine.

Here is an overview of the optimization model to be solved by Renault:

checklist

Input data

  • 1,400 suppliers in Europe
  • 40 plants and cross docks
  • 30 types of standard packaging
checklist

Decisions

For each type of empty packaging, each day, each supplier, and each plant, one has to decide the number of pallets that will travel between the supplier and the plant

link

Constraints

  • Consistency between stocks and shipments
  • Minimum quantities to allow shipping
  • Maximum inflows and outflows per factory
  • Stock balancing of transfer stations to avoid activity peaks
target

Objectives

  • Minimize the lack of packaging (immediate and in stock)
  • Minimize the number of shippings
  • Minimize the total distance traveled
Contact us for more details

Mathematical model & results

Here is the size of the instances to be solved once modeled using LocalSolver, and the key performance figures of the resolution:

Learn more about LocalSolver

Why LocalSolver

After a benchmark against CPLEX, Renault’s Operations Research team finally chose LocalSolver to solve this packaging logistics optimization problem. The simple and powerful modeling language offered on the top of LocalSolver, namely LSP, allowed the team to develop the mathematical model quickly. Then, the innovative primal heuristics inside LocalSolver, combined with state-of-the-art exact methods, delivered proven near-optimal solutions in minutes of running times. The dedicated and responsive support provided by LocalSolver experts was also instrumental in moving the project fastly forward.

Renault

We use LocalSolver for several optimization problems, including scheduling door manufacturing in car factories and optimizing empty packaging return flows. What we appreciate most is the incomparable ease of modeling provided by LocalSolver mathematical formalism. Besides, exchanging with the LocalSolver team is always extremely fruitful and highly pleasant.

Alain Nguyen, Head of Operations Research, Renault

More client testimonials

Do you need any further information? Please contact us

Contact information





Your request
Contact us - Disclaimer - Privacy policy - Copyright 2021 LocalSolver