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Abstract. In this paper, a real-life routing and scheduling problem en-
countered is addressed. The problem, which consists in optimizing the
delivery of fluids by tank trucks on a long-term horizon, is a general-
ization of the vehicle routing problem with vendor managed inventory
replenishment. The particularity of this problem is that the vendor moni-
tors the customers’ inventories, deciding when and how much each inven-
tory should be replenished by routing tank trucks. Thus, the objective
of the vendor is to minimize the logistic cost of the inventory replenish-
ment for all customers over the long run. Then, an original local-search
heuristic is presented for solving the short-term planning problem. The
engineering of this algorithm follows the three-layers methodology for
“high-performance local search” recently introduced by some of the au-
thors. A computational study demonstrates that our solution is both ef-
fective, efficient and robust, providing long-term savings exceeding 20 %
on average, compared to solutions computed by expert planners or even
a classical greedy algorithm. The resulting software is now exploited in
North America by one of the French industry leaders.

1 Presentation of the problem

The problem addressed in this paper is a real-life inventory routing problem
(IRP) occurring in one of the world’s leading companies in its field. For the sake
of concision, the problem is not completely and formally described here, but its
main characteristics are outlined.

Spread over a geographical area, some customers consume fluid products
and plants produce it. Each customer is equipped with a storage; similarly, each
plant has a storage from which product can be pumped. Reliable forecasts of
production at plants are known over a short-term horizon. On the customer
side, two kinds of resupply are managed by the vendor. The first one, called
“forecasting-based resupply”, corresponds to clients for which reliable forecasts
of consumption are available over a short-term horizon. The inventory of each
customer must be replenished by tank trucks so as to never fall under its safety
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level. The second one, called “order-based resupply”, corresponds to customers
which send orders to the vendor, specifying the desired quantity and the time
window in which the delivery must be done. Some customers can ask for the
both types of resupply management: their inventory is replenished by the vendor
using monitoring and forecasting, but they keep the possibility of ordering (to
deal with an unexpected increase of their consumption, for example). Constraints
consisting in maintaining inventory levels above safety levels (no stock out) and
in satisfying orders (no missed orders) are defined as soft, since the existence of
an admissible solution is not ensured in real-life conditions.

The transportation is performed by vehicles composed of three kinds of het-
erogenous resources: drivers, tractors, trailers. Each resource is assigned to a
base. A vehicle corresponds to the association of one driver, one tractor and one
trailer. Some triplets of resources are not admissible (due to driving licences, for
example). The availability of each resource is defined through a set of time win-
dows. Each site (plant or customer) is accessible to a subset of resources (special
skills or certifications are required to work on certain sites). Thus, scheduling a
shift consists in defining: a base, a triplet of resources (driver, tractor, trailer),
and a set of operations each one defined by a triplet (site, date, quantity) cor-
responding to the pickups or deliveries performed along the tour. A shift must
start from the base to which are assigned the resources composing the vehi-
cle and must end by returning to this base. The working and driving times of
drivers are limited; as soon as a maximum duration is reached, the driver must
take a rest with a minimum duration (Department of Transportation rules). In
addition, the duration of a shift cannot exceed a maximal value depending on
the driver. The sites visited along the tour must be accessible to the resources
composing the vehicle. A resource can be used only during one of its availabil-
ity time windows. The date of pickup/delivery must be contained in one of the
opening time windows of the visited site. Finally, the inventory dynamics, which
can be modeled by flow equations, must be respected at each time step, for each
site inventory and each trailer. In particular, the sum of quantities delivered to
a customer (resp. loaded at a plant) minus (resp. plus) the sum of quantities
consumed by this customer (resp. produced by this plant) over a time step must
be lower (resp. greater) than the capacity of its storage (resp. zero). Note that
here the duration of an operation does not depend on the delivered or loaded
quantity; this duration is fixed in function of the site where the operation is
performed, the resulting approximation being covered by the uncertainties lying
on the traveled times.

In our case, reliable forecasts (for both plants and customers) are known
over a 15-days horizon. Thus, shifts are planned deterministically day after day
with a rolling horizon of 15 days. It means that each day, a distribution plan is
built for the next 15 days, but only shifts starting at the current day are fixed.
The objective of the planning is to respect the soft constraints described above
over the long run (satisfying orders, maintaining safety levels). In practice, the
situations where these constraints cannot be met are extremely rare, because
missed orders and stockouts are unacceptable for customers (on the other hand,
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safety levels must be finely tuned according to customer consumptions). Then,
the second objective is to minimize over the long term a logistic ratio defined as
the sum of the costs of shifts (which is composed of different terms related to the
usage of resources) divided by the sum of the quantities delivered to customers.
In other words, this logistic ratio corresponds to the cost per unit of delivered
quantity.

Large-scale instances have to be tackled. A geographic area can contain up
to 1500 customers, 50 sources, 50 bases, 100 drivers, 100 tractors, 100 trail-
ers. All dates and durations are expressed in minutes (on the whole, the short-
term planning horizon counts 21600 minutes); the inventory dynamics for plants
and customers are computed with time steps of one hour (because forecasts are
computed with this accuracy). The execution time for computing a short-term
planning is limited to 5 minutes on standard computers.

2 Related works

Since the seminal work of Bell et al. [1] on a real-life inventory routing problem
encountered at Air Products (a producer and distributor of industrial gases), a
vast literature has emerged on the subject. In particular, a long series of papers
was published by Savelsbergh et al. [2, 3, 5, 8, 9], motivated by a real-life prob-
lematic encountered at Praxair (another supplier of industrial gases). However,
in many companies, inventory routing is still done by hand or supported by ba-
sic softwares, with rules like: serve “emergency” customers (that is, customers
whose inventory is near to run out) using as many “full deliveries” as possible
(that is, deliveries with quantity equal to the trailer capacity or, if not possible,
to the customer tank capacity). For more references, the interested reader is
referred to the recent papers by Savelsbergh and Song [8, 9], which give a good
survey of the research done on the IRP over the past 25 years.

To our knowledge, the sole papers describing practical solutions for problems
similar to the one addressed here are the ones by Savelsbergh et al. [3, 5, 8,
9]. The solution approaches described in these papers are the same in essence:
the short-term planning problem is decomposed to be solved in two phases.
In the first phase, it is decided which customers are visited in the next few
days, and a target amount of product to be delivered to these customers is set.
In the second phase, vehicle routes are determined taking into account vehicle
capacities, customer delivery windows, drivers restrictions, etc. The first phase
is solved heuristically by integer programming techniques, whereas the second
phase is solved with specific insertion heuristics [4]. The experiments reported
in the different works on the subject [1, 3, 5, 8, 9] show savings up to 10 % over
the long run (with computation times of several minutes), compared to solutions
obtained by a greedy algorithm based on the rules of thumb commonly used in
practice (like the one cited above).
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3 Contribution

To our acquaintance, no pure and direct local-search algorithm has been pro-
posed for solving the IRP. A local-search approach is described by Lau et al. [7]
for solving an inventory routing problem with time windows, but their approach
is based on a decomposition scheme (distribution and then routing). In this
paper, an original local-search heuristic is described for solving the short-term
planning problem. We insist on the fact that no decomposition is done in our
approach: the short-term planning is optimized directly over the 15-days hori-
zon. This algorithm has been designed and engineered following the methodology
described by Estellon et al. [6] in a companion paper. A computational study
demonstrates that our solution is both effective, efficient and robust, providing
long-term savings exceeding 20 % on average, compared to solutions computed
by expert planners or even a classical greedy algorithm.

Following the methodology exposed in [6], our local-search heuristic is de-
signed according to three layers. The first layer corresponds to the search strat-
egy; here a first-improvement descent heuristic with stochastic selection of trans-
formations is employed (an initial solution is computed using an urgency-based
insertion heuristic). The second layer corresponds to the pool of transformations
which defines the neighborhood; here more than one hundred transformations
are defined on the whole, which can be grouped into a dozen of types (for op-
erations: insertion, deletion, ejection, move, swap; for shifts: insertion, deletion,
rolling, move, swap). Finally, the third layer, corresponding to the “engine” of
the local search, consists of three main procedures common to all transforma-
tions: evaluate (which evaluates the gain provided by the transformation applied
to the current solution), commit (which validates the transformation by updat-
ing the current solution and the associated data structures), rollback (which
clears all the data structures used to evaluate the transformation). Since the
duration of an operation does not depend on the quantity loaded or delivered,
the evaluation procedure is separated into two routines: first the scheduling of
shifts and then the assignment of volumes. These routines, whose running time
is critical for performance, relies on incremental algorithms supported by special
data structures for exploiting invariants of transformations.

The whole algorithm was implemented in C# 2.0 programming language
(for running on Microsoft .NET 2.0 framework). The resulting program includes
nearly 30000 lines of code, whose 6000 lines (20 %) are dedicated to check the
validity of all incremental data structures at each iteration (only active in de-
bug mode). The whole project (specifications, research, implementation, tests),
realized during the year 2008, required nearly 300 man-days. All statistics and
results presented here have been obtained on a computer equipped with a Win-
dows Vista operating system and a chipset Intel Xeon X5365 64 bits (CPU
3 GHz, L1 cache 64 Kio, L2 cache 4 Mio, RAM 8 Go). The local-search algo-
rithm attempts more than 10000 transformations per second, even for large-scale
instances (thousand sites and hundred resources). Then, our algorithm visits
nearly 10 million solutions in the search space during 5 minutes of running time
(which is the desired time limit in operational conditions). When planning over a
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15-days horizon, the memory allocated by the program does not exceed 30 Mo for
medium-size instances (hundred sites, ten resources), and 300 Mo for large-scale
instances (thousand sites, hundred resources). Note that the running time of the
urgency-based insertion heuristic is of few seconds for large-scale instances. The
acceptance rate, which corresponds to the number of accepted transformations
(that is, not strictly improving current solution) over the number of attempted
ones, varies essentially between 1 and 10 % according to instances and optimiza-
tion phases. Note that this rate is quasi constant all along the search (that is,
during the 5 minutes of running time), allowing a large diversification of the
search without the use of metaheuristics. On the other hand, the number of
(strictly) improving transformations is of several hundreds.

The local-search algorithm has been extensively tested on several dozens of
benchmarks with different characteristics: realistic (that is, matching the op-
erational conditions), pathological (for example, with plants whose production
is stopped several days), large-scale (for example, with 1500 sites and 300 re-
sources). On 5 long-term real-life benchmarks (105 days), the gain obtained by
the local-search algorithm with 5 minutes of running time per planning iteration
reaches 21.8 % (resp. 25.3 %) on average compared to solutions obtained by the
urgency-based insertion heuristic (resp. solutions built by the logistic experts of
the company for which this R&D project was conducted).
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