Local search for mixed-integer nonlinear optimization: methodology and applications

Frédéric Gardi

Bouygues e-lab, Paris
fgardi@bouygues.com

Joint work with T. Benoist, B. Estellon, A. Jeanjean, K. Nouioua
Bouygues e-lab & LIF UMR 6166 - Université Aix-Marseille 2
Theory says “no, no, no”

EDF’s unit commitment problem is a very large-scale mixed-integer nonlinear (MINL) problem.

Example of very large-scale MINLP: scheduling outages of EDF nuclear power plants (ROADEF Challenge 2010) involves 10^9 decision variables, including 10^7 boolean variables.

$$\text{MINLP} \leftarrow \text{MILP} \leftarrow \text{IP} \leftarrow \text{0-1 IP}$$

Thus, large-scale MINLP are extremely hard to solve:

- Theoretically: NP-complete, non-approximable, …

- Practically: proving optimum (= finding feasible solution) in reasonable running times (less than one century :-;) is impossible.
But no matter

What are the needs in business and industry?

1) Clients have optimization problems, and rarely satisfaction problems. “No solution found” is rarely an acceptable answer for users. Thus, once the model is well stated, finding a feasible solution should be easy.

→ Goal programming (soft constraints, etc.)

2) Optimal solution is not what clients really want.

- *Proof* of optimality is much less what they want
- They want a nice software providing good solutions quickly
- Better and faster than before having your software
- Then, they could be interested in optimality gap...

→ Don’t be focused on optimality
So... Tree Search?

Mixed-integer programming techniques (B&B, B&C, BCP) are:
- Designed for proving optimality
- Not designed to find feasible solutions

MIP techniques are powerful for tackling small instances (1,000 binaries). When relaxation is good, medium instances (10,000 to 100,000 binaries) can be tractable.

Our conviction: pure tree-search techniques will remain powerless for solving very large-scale combinatorial problems.
So... Tree Search?

Why?

1) Relaxation is often useless but costs a lot in efficiency. So why losing running time to enumerate partial solutions?

2) Why an incomplete tree search should be better than a local search? Moreover, tree search is not really suited for exploring randomly (without bias) a search space.

Facts:

State-of-the-art solvers integrate more and more local-search ingredients in B&B (Local Branching, Relaxation Induced Neighborhood Search).

TSP records:
- B&C [Applegate, Bixby, Cook, Chvátal, etc.]: 85,900 cities
- LS [Helsgaun]: 1,904,711 cities (World TSP), and until 10,000,000 cities
So… Local Search!

LS paradigm: iterative improvements by applying (local) transformations on the current solution.

Performance (efficiency and effectiveness) not well understood today. Rare theoretical results: LS is very bad… in the worst case!

But a renowned practical solution for solving hard practical problems:

good-quality solutions with short running times (minutes)

Then, the common vision of what is LS can be summarized as:

$\text{LS} = \text{metaheuristics} = \text{cooking}$
Local Search is not cooking

Our vision:

\[\text{LS} = \text{incomplete & non deterministic search} \]

Consequently, LS must be:

1) Pure & direct: **no decomposition**, no hybridization.

2) Highly randomized: any decision taken is randomized.

3) **Aggressive**: millions of feasible solutions explored.
LS = randomized moves + incremental computation

Therefore, our work is concentrated on:
- Designing moves enabling an effective exploration of search space.
- Speeding up the evaluation of moves (algorithm engineering).

“Incremental computation”, what’s that?

Given a solution S to an optimization problem and a transformation $\Delta: S \rightarrow S'$. Denote by $|\Delta|$ the length of “changes” between S and S'.

Question: design an $O(|\Delta|)$-time algorithm to compute the cost of S'.
Methodology developed during the last 10 years while solving several combinatorial optimization problems with high economic stakes:

- Car sequencing (Renault*, ROADEF 2005 Challenge)
- Workforce and task scheduling (France Telecom, 2007 Challenge)
- Media planning (TF1*, 2011)

Extended to mixed-variable optimization:

- Inventory routing (Air Liquide*, 2008): MILP
- Resource scheduling for mass transportation (By Cons*, 2009) : MILP
- Nuclear plant maintenance planning (EDF, 2010 Challenge): MINLP
Methodology for MINLP

Local Search is rarely used in the context of MINL optimization.

Main principle: combinatorial and continuous parts are treated together
→ Combinatorial and continuous decisions are **simultaneously modified by a move** during the search

Main difficulty: solving efficiently the continuous subproblem

Practical solution: an **incremental randomized combinatorial algorithm** for solving approximately but very efficiently the continuous subproblem:
- From 1,000 to 10,000 times faster than using LP approximations
- Near-optimal solutions found in practice
Methodology

Work surrounded by an important effort in software engineering for ensuring reliability of this critical evaluation machinery:

- programming with assertions
- checkers for incremental structures
- continuous refactoring
- CPU & memory profiling

→ Quest of high performance

Note: we have relaxed this effort the last week of EDF Challenge in order to concentrate our work on some improving technical features, and we have crashed…
Results on EDF Challenge

 Ranked 1st over 44 teams on benchmark A (qualification)
 Ranked 1st over 16 teams on benchmark B (final)
 We fall to the 8th rank due to a bug on hidden benchmark X :-(

\begin{table}
\centering
\caption{Official ranking of solution approaches on instances B.}
\begin{tabular}{|c|c|c|c|}
\hline
instance & team & technique & average gap \\
\hline
1 & S22 Gardi-Nouioua & LS & 0.23 \% \\
2 & S24 Kuipers-Peekstok & LS & 0.24 \% \\
3 & S23 Wolfler Calvo et al. & MIP & 1.46 \% \\
4 & J06 Kjeldsen et al. & LS & 2.13 \% \\
5 & S21 Jost et al. & MIP & 4.71 \% \\
6 & J08 Steiner et al. & ACO/LS & 11.99 \% \\
7 & S04 Dell’Amico & LNS/MIP & 13.02 \% \\
8 & S14 Weber et al. & LS & 14.52 \% \\
9 & S08 Hurkens & MIP & 29.17 \% \\
10 & S17 Soumis et al. & MIP & 35.10 \% \\
11 & S16 Cambazard et al. & LNS/CP & 55.57 \% \\
12 & J05 Ahlroth et al. & LNS & 106.36 \% \\
13 & S10 Petersen et al. & MIP & 1726.61 \% \\
14 & J16 Heinz & CP/MIP & 1850.71 \% \\
15 & S11 Nattero et al. & MIP/LS & 2332.98 \% \\
16 & S25 Gavranovic et al. & CP & 3458.06 \% \\
\hline
\end{tabular}
\end{table}
More results

Our recent works on local search for mixed-integer optimization:

Web: http://pageperso.lif.univ-mrs.fr/~frederic.gardi
Conclusion

LS = practical solution for practical problems
LS = good-quality solutions within short running times

But LS is not cooking. Our vision:

LS = incomplete & non deterministic search
LS = randomized moves + incremental computation (= run fast)

→ Less “Maths” (analytical), more “Computer Science” (algorithmic)
→ A lot of software and algorithm engineering

So why not?
Based on these methodology and experiences, we start developing in 2007 a black-box solver entirely based on local search for combinatorial optimization.

LocalSolver is able to tackle large-scale real-life 0-1 programs (with nonlinear constraints and objectives): 10 millions of binary variables.

www.localsolver.com

Exploited in Bouygues Group (TF1, ETDE, Colas), but also outside (Eurodecision). Commercial version (2.0) prepared for early 2012.

Bouygues e-lab: T. Benoist, J. Darlay, F. Gardi, R. Megel
LIF Aix-Marseille: B. Estellon, K. Nouioua