LocalSolver logo
is now
Hexaly logo

We're excited to share that we are moving forward. We're leaving behind the LocalSolver brand and transitioning to our new identity: Hexaly. This represents a leap forward in our mission to enable every organization to make better decisions faster when faced with operational and strategic challenges.

This page is for an old version of Hexaly Optimizer. We recommend that you update your version and read the documentation for the latest stable release.

Setting an initial solutionΒΆ

LocalSolver does not need a starting solution to launch its algorithms.

However in some cases you may want to force LocalSolver to start from a specific solution. For instance a planning system may consist in reoptimizing every morning the current planning (inserting new tasks and taking into account updated deadlines). In such a case passing an intial solution as input is natural.

Such an intialization will be achieved in LocalSolver by setting the value of decision variables. For numeric decision variables (boolean, integers and floats) it is done with the value attribute in the LSP modeler. For collection decision variable (lists) we use the add and clear functions on this value:

function param() {
    // with x an int, y a float and z a list
    x.value = 3;
    y.value = 4.3;
    z.value.clear();
    z.value.add(2);
    z.value.add(0);
}

Note that only decision variables can be initialized: setting the value of any other expression will throw an exception. Besides, it is not necessary to set the values of all decision variables. On the contrary in can make sense to set the values of some of the decision variables, while relyling on LocalSolver to initialize other values. It is also possible to intialize values to an infeasible solution, that is to say a solution violating some of the constraints. In this case, LocalSolver will start from this infeasible solution and quickly move to a feasible solution. The only requirement is that a decision variable cannot be given a value outside of its domain. For instance an integer decision defined as int(3,10) cannot be given value 15 and a list cannot be initialized to a collection with duplicated values.

In the APIs, the principle is the same.

Setting the value of a numeric expression is done with set_value (on the solution or on the expression). Lists are modified with add and clear.

# With sol a solution and exp and expression
sol.set_value(exp, 0)
exp.set_value(1)

# With listExpr a list variable
col = listExpr.get_value()
col.clear()
col.add(2)
col.add(0)
col.add(3)

Setting the value of a numeric expression is done with setIntValue or setValue for int and boolean decisions or with setDoubleValue for float decisions. Lists are modified with add and clear.

// With ls a LocalSolver object
LSSolution sol = ls.getSolution();
LSExpression intExpr = ls.getModel().getExpression("x");
LSExpression dblExpr = ls.getModel().getExpression("y");
LSExpression listExpr = ls.getModel().getExpression("z");

sol.setValue(intExpr, 12ll);
intExpr.setValue(12ll);

sol.setIntValue(intExpr, 12ll);
intExpr.setIntValue(12ll);

sol.setDoubleValue(dblExpr, 4.8);
dblExpr.setDoubleValue(4.8);

LSCollection col = listExpr.getCollectionValue();
col.clear();
col.add(2);
col.add(0);
col.add(3);

Setting the value of a numeric expression is done with setIntValue or setValue for int and boolean decisions or with setDoubleValue for float decisions. Lists are modified with add and clear.

// with ls a LocalSolver object
LSSolution sol = ls.getSolution();
LSExpression intExpr = ls.getModel().getExpression("x");
LSExpression dblExpr = ls.getModel().getExpression("y");
LSExpression listExpr = ls.getModel().getExpression("z");

sol.setValue(intExpr, 12);
intExpr.setValue(12);

sol.setIntValue(intExpr, 12);
intExpr.setIntValue(12);

sol.setDoubleValue(dblExpr, 4.8);
dblExpr.setDoubleValue(4.8);

LSCollection col = listExpr.getCollectionValue();
col.clear();
col.add(2);
col.add(0);
col.add(3);

Setting the value of a numeric expression is done with SetIntValue or SetValue for int and boolean decisions or with SetDoubleValue for float decisions. Lists are modified with Add and Clear.

// With ls a LocalSolver object
LSSolution sol = ls.GetSolution();
LSExpression intExpr = ls.GetModel().GetExpression("x");
LSExpression dblExpr = ls.GetModel().GetExpression("y");
LSExpression listExpr = ls.GetModel().GetExpression("z");

sol.SetValue(intExpr, 12);
intExpr.SetValue(12);

sol.SetIntValue(intExpr, 12);
intExpr.SetIntValue(12);

sol.SetDoubleValue(dblExpr, 4.8);
dblExpr.SetDoubleValue(4.8);

LSCollection col = listExpr.GetCollectionValue();
col.Clear();
col.Add(2);
col.Add(0);
col.Add(3);